formation of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{PPCF}_{3}$ and the consequent catalysis of the $\left(\mathrm{CF}_{3} \mathrm{P}\right)_{4}-\left(\mathrm{CF}_{3} \mathrm{P}\right)_{5}$ equilibrium. ${ }^{5}$ The reaction occurred in a weighed stopcocked bulb, during warming to 25°, and was completed at 50°. The $\mathrm{CF}_{3} \mathrm{P}$ was distilled out as the tetramer-pentamer mixture (identified by infrared spectra and basic hydrolysis to give $0.5 \mathrm{HCF}_{3}$ per $\left.\mathrm{CF}_{3} \mathrm{P}\right) .{ }^{2}$ The less volatile $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{PS}$ was weighed as a residue and characterized as described later.
The P-S-P situation of the sulfur was proved by basic hydrolysis. If the sulfur were $\mathrm{P}=\mathrm{S}$ bonded outside the ring, the products should be a trifluoromethyl phosphonate and the consequences of H_{2} $\left(\mathrm{CF}_{3} \mathrm{P}\right)_{3}$, leading to only one HCF_{3} per $\left(\mathrm{CF}_{3} \mathrm{P}\right)_{4} \mathrm{~S}$. But from the P-S-P situation hydroxyl would displace sulfide and form two $\mathrm{P}-\mathrm{O}$ bonds, so that the rules of basic hydrolysis ${ }^{2}$ would predict $2.5 \mathrm{HCF}_{3} \operatorname{per}\left(\mathrm{CF}_{3} \mathrm{P}\right)_{4} \mathrm{~S}$. Actually, a $24.6-\mathrm{mg}$ sample gave 0.140 mmole of HCF_{3}, or 2.50 per mole. The recovery of $\mathrm{H}_{2} \mathrm{~S}$ from the acidified solution was 95%.
The neutral methanol reaction of $\left(\mathrm{CF}_{3} \mathrm{P}\right)_{4} \mathrm{~S}$ was slow and complex, apparently with $\mathrm{P}-\mathrm{S}$ bonds cleaving scarcely more easily than P-P. Thus $\mathrm{CF}_{3} \mathrm{PH}_{2}$ was formed almost as soon as $\mathrm{H}_{2} \mathrm{~S}$, suggesting the possibility of isolating intermediate $\mathrm{P}_{n} \mathrm{~S}$ open-chain compounds, analogous to the cleavage products of the $\left(\mathrm{CF}_{3} \mathrm{P}\right)_{n}$ rings. ${ }^{6}$ After 11 hr at 90°, a mixture of $\mathrm{CF}_{3} \mathrm{PH}_{2}$ and $\mathrm{H}_{2} \mathrm{~S}$ was delivered through a high-vacuum trap at -120° and resolved by means of lead acetate solution. The yield of $\mathrm{CF}_{3} \mathrm{PH}_{2}$ was 39%; predicted, 37.5%. The demonstrable yield of $\mathrm{H}_{2} \mathrm{~S}$ was 89%. The expected 62.5% yield of $\left(\mathrm{CF}_{3} \mathrm{HPOOH}\right)_{2}$ and $\mathrm{CF}_{3} \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2}^{7}$ could not be isolated from the excess methanol. Dimethyl ether was a large product of the 90° heating.

Physical Properties. The volatility of pure $\left(\mathrm{CF}_{3} \mathrm{P}\right)_{4} \mathrm{~S}$ is represented by the equation $\log P_{\mathrm{mm}}=6.8222+$ $1.75 \log T-0.005 T-2881 / T\left(t_{760}=183^{\circ}\right.$; Trouton constant, 21.9 eu); examples, 0.94 mm at $24.1^{\circ}, 2.67$ mm at $40.1^{\circ}, 8.91 \mathrm{~mm}$ at 61.17°, and 14.22 mm at 70.20° (calcd, $0.94,2.67,8.92$, and 14.20 mm).

The ultraviolet spectrum of the vapor of $\left(\mathrm{CF}_{3} \mathrm{P}\right)_{4} \mathrm{~S}$ showed a fairly broad maximum at 2400 A , a shallow minimum at 2280 A , and a sharp maximum at 2050 A , with molar extinction coefficients respectively 3500 , 3100 , and 8300 .
The infrared peaks of $\left(\mathrm{CF}_{3} \mathrm{P}\right)_{4} \mathrm{~S}$ vapor (heated as high as 85°) had the following frequencies (cm^{-1}) with relative intensities in parentheses: C-F stretching, 1153 (190) and 1139 (240); CF_{3} deformations, 743 (6.5) and 551 (0.8); P-S-P asymmetric stretching, 511 (2.3); $\mathrm{P}-\mathrm{CF}_{3}$ stretching, 431 (6) and 418 (2.3); CF_{3} rocking, 315 (0.9); overtones and combinations, 2265 (0.64), 1874 (0.24), 1895 (0.14); unassigned, 1279 (1.1), 843 (0.20), 822 (0.22), 537 sh, 483 (1.0), 464 (0.95), $407 \mathrm{sh}, 352$ (0.20), and 337 (0.34). The P-S-P band was obvious from the literature, ${ }^{8}$ and there was no band assignable to a $\mathrm{P}=\mathrm{S}$ bond.
Trimethylphosphine Sulfide. The $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{PS}$ from the analytical reaction was sublimed from the weighing bulb at 50° into an immersible tensimeter wherein the vapor tensions were measured: $\log P_{\operatorname{mm}}=10.545-$

[^0]$3670 / T$; examples, 3.30 mm at $92.8^{\circ}, 9.80 \mathrm{~mm}$ at 111.0°, and 16.97 mm at 120.8° (calcd, $3.29,9.81$, and 16.97). Its infrared spectrum showed distinct (although unresolved) P, Q, and R branches for the vapor phase up to 115°-understandably deviant from the solid-phase spectrum. ${ }^{8}$ The frequencies of the peaks, with relative intensities in parentheses, were as follows: C-H stretching, 3035 (0.5), 3002R (I.9), 2993Q (2.4), 2985 shP (1.5), 2932R (1.9), 2923Q (2.8), 2914 shP (1.6), 2883 (0.31); CH_{3} deformations, 1445 sh (0.67), 1435R (1.1), 1422 Q (1.7), $1410 \operatorname{shP}(0.9), 1320$ (1.2), 1313 (2.0), 1300R (2.5), 1289Q (3.8), 1280 shP (1.8); CH_{3} rocking and wagging, 973R (5.6), 971Q (10), 961P (7.5), 939 (5.5), 862R (0.56), 852Q (1.2), 843P (0.48), 822 (0.13); $\mathrm{P}=\mathrm{S}$ stretching, 731 R (6.7), 725P (6.9); P—C stretching, 591R (0.9), 582Q (1.7), 575P (0.8).

Anton B. Burg
Department of Chemistry, University of Southern California Los Angeles, California 90007
Received July 5, 1966

Continuous Synthesis of Optically Active α-Hydroxynitriles

Sir:
The flavoprotein D-oxynitrilase (E.C. 4.I.2.10), the preparation and properties of which have been described by us, ${ }^{1,2}$ combines with cellulose-based ion exchangers to form a very active, stable catalyst, which gives excellent results in the continuous synthesis of $\mathrm{D}-\alpha$-hydroxynitriles from aldehydes and hydrocyanic acid. ${ }^{3}$ The products, which are optically almost homogeneous, can be prepared on the kilogram scale by means of milligram quantities of the enzyme.

Preparation of the Catalyst. ECTEOLA cellulose (coarse-fiber product for technical use) charged with chloride ions is slurried in a column ($1 \times 5 \mathrm{~cm}$). The exchanger adsorbs the D-oxynitrilase quantitatively from its salt-free aqueous solution (enzyme concentration $5-10 \mathrm{mg} / \mathrm{ml}$), which is slowly passed through the column. Before the substrate is added, the catalyst is equilibrated with the reaction medium. Suitable solvents for the stereospecific synthesis are salt-free methanol-water mixtures.

D-(+)-Mandelonitrile. A mixture of very pure benzaldehyde (0.2 M) and hydrogen cyanide (0.3 M) in cold 50% methanol is passed through a catalyst column containing $50-80 \mathrm{mg}$ of D-oxynitrilase at a rate of $10-15 \mathrm{ml} / \mathrm{min}$. (The reservoir is cooled to avoid evaporation of HCN. When larger quantities are used, the experiment should be carried out under nitrogen to avoid oxidation of the benzaldehyde since benzoic acid is a strong inhibitor for the enzyme). The solvent and excess hydrocyanic acid are evaporated under vacuum at 50°. The residual clear colorless oil, when cold, crystallizes on rubbing with a glass rod, and gives colorless needles, mp $28-29^{\circ} ;[\alpha]^{20} \mathrm{D}+46^{\circ}$ (c $5, \mathrm{CHCl}_{3}$); yield 95%.
(1) W. Becker, U. Benthin, E. Eschenhof, and E. Pfeil, Biochem. Z., 337, 156 (1963) (older method for the preparation of the enzyme).
(2) W. Becker and E. Pfeil, ibid,, in press (improved method of preparation).
(3) W. Becker and E. Pfeil, Federal German Patent Application P 36473 IV b/120 (April 7, 1965).

The nmr and infrared spectra of the reaction product show that it is homogeneous. It contains $97 \% \mathrm{D}-$ and 3% L-mandelonitrile (lit. ${ }^{4}[\alpha] \mathrm{D}+48.7^{\circ}\left(\mathrm{CHCl}_{3}\right)$ for optically pure $\mathrm{D}-(+)$-mandelonitrile).
The method described for the synthesis of $\mathrm{D}-(+)$ mandelonitrile can be used for the conversion of many aliphatic, aromatic, and heteroaromatic aldehydes into $\mathrm{D}-\alpha$-hydroxynitriles, which can be readily transformed into optically active $\mathrm{D}-\alpha$-hydroxycarboxylic acids, substituted ethanolamines, ${ }^{5}$ or acyloins. ${ }^{6}$ A table showing the aldehydes that can be used is given in ref 2.

Since both the reaction rate and the solubility in the reaction medium vary according to the aldehyde, the quantity of catalyst, flow rate, concentration of the reactants, and methanol-water ratio must be matched to the substrate in question in order to obtain optimum yields. A suitable pH range has been found to be $4.8-$ 5.2 ; the H^{+}concentration can be adjusted with volatile acids or bases.
(4) H. Albers and E. Albers, Z. Naturforsch., 9b, 122 (1955).
(5) W. Becker, H. Freund, and E. Pfeil, Angew. Chem., 77, 1139 (1965); Angew. Chem. Intern. Ed. Engl., 4, 1079 (1965).
(6) I. A. Smith, Ber. Deut. Chem. Ges., 64, 432 (1931).

Wolfgang Becker, Emanuel Pfeil
Chemisches Institut der Universität Marburg/Lahn
Marburg/Lahn, Germany
Received August 1,1966

A Volatile Inorganic Salt, $\mathrm{Cs}\left[\mathrm{Y}\left(\mathrm{CF}_{3} \mathrm{COCHCOCF}_{3}\right)_{4}\right]$

 Sir:In the course of our investigation of a series of eightcoordinate β-diketonate complexes of yttrium and the rare earths, we made the rather surprising discovery that $\mathrm{Cs}\left[\mathrm{Y}(\mathrm{HFA})_{4}\right](\mathrm{HFA}=$ hexafluoroacetylacetonate $)$ sublimes both in air and in vacuo without decomposition at temperatures ranging from 180 to 230°. In order to obtain further information about the identity of the chemical species in the vapor phase and in view of the current interest ${ }^{1-5}$ in the mass spectra of various transition metal complexes, we have measured the mass spectrum of $\mathrm{Cs}\left[\mathrm{Y}(\mathrm{HFA})_{4}\right]$. Some preliminary results are reported here.

Analytically pure crystalline $\mathrm{Cs}\left[\mathrm{Y}(\mathrm{HFA})_{4}\right]$ was prepared in 60% yield from the reaction of $\mathrm{Cs}(\mathrm{HFA})$ with YCl_{3} (4:1) in aqueous ethanol. Anal. Calcd for $\mathrm{CsYC}_{20} \mathrm{H}_{4} \mathrm{O}_{8} \mathrm{~F}_{24}$: C, 22.86; $\mathrm{H}, 0.38 ; \mathrm{F}, 43.43$. Found: C, 22.9; H, 0.60 ; F, 42.6. A small quantity of the product was sublimed at 170° in vacuo (0.02 mm) onto a probe cooled with running water using the apparatus described previously. ${ }^{6}$ The material obtained was analyzed (Found: C, 22.53; H, 0.58) and used in the mass spectrometric investigation.

A list of several of the peaks observed in the mass spectrum of $\mathrm{Cs}\left[\mathrm{Y}(\mathrm{HFA})_{4}\right]$ may be found in Table I, along with their tentative assignments. ${ }^{7}$ In addition
(1) R. B. King, J, Am. Chem. Soc., 88, 2075 (1966).
(2) E. P. Dudek and M. Barber, Inorg. Chem., 5, 375 (1966).
(3) J. S. Shannon and J. M. Swan, Chem. Commun., 33 (1965).
(4) F. W. McLafferty, Appl. Spectry., 11, 148 (1957).
(5) B. F. G. Johnson, J. Lewis, I. G. Williams, and J. Wilson, Chem. Commun., 391 (1966).
(6) F. A. Cotton, S. J. Lippard, and J. T. Mague, Inorg. Chem., 4, 508 (1965).
(7) The mass spectrum was taken using an ionizing voltage of $70-\mathrm{ev}$ on a Hitachi-Perkin-Elmer RMU-6D mass spectrometer at a temperature of 190°. Perfluorokerosene was used as a calibrant for masses up
to the peaks expected for the "molecular ion," Cs$\left[\mathrm{Y}(\mathrm{HFA})_{4}\right]^{+}$, and its most likely decomposition daughters, Cs^{+}and $\mathrm{Y}(\mathrm{HFA})_{4}{ }^{+}$, peaks corresponding to stepwise loss of ligand molecules to give $\mathrm{Y}(\mathrm{HFA})_{3}{ }^{+}$, $\mathrm{Y}(\mathrm{HFA})_{2}{ }^{+}$, and $\mathrm{Y}(\mathrm{HFA})^{+}$are quite prominent. The loss of β-diketonate ligand radicals has been previously observed for the iron, chromium, and aluminum acetylacetonates. ${ }^{3,4}$

Table I. Partial List of Peaks in the Mass Spectrum of Cs[Y(HFA) $)_{4}$

Mass number	Assignment	Intensity ${ }^{a}$
1050 ± 5	$\mathrm{Cs}\left[\mathrm{Y}(\mathrm{HFA})_{4}\right]^{+}$	vvw
917 ± 2	$\mathrm{Y}(\mathrm{HFA})_{4}{ }^{+}$	w
843	$\mathrm{Cs}\left[\mathrm{Y}(\mathrm{HFA})_{3}\right]^{+}$	s
807	$\left(\mathrm{CF}_{3} \mathrm{CO}\right) \mathrm{Y}(\mathrm{HFA})_{3}{ }^{+}$	m
738	(CO) $\mathrm{Y}(\mathrm{HFA})_{3}{ }^{+}$	s
710	$\mathrm{Y}(\mathrm{HFA})_{3}{ }^{+}$	s
641	$\left(\mathrm{COCHCOCF}_{3}\right) \mathrm{Y}(\mathrm{HFA})_{2}{ }^{+}$	s
503	Y(HFA$)_{2}{ }^{+}$	s
434	$\left(\mathrm{COCHCOCF}_{3}\right) \mathrm{Y}(\mathrm{HFA})^{+}$	w-m
340	Cs (HFA)	w
296	$\mathrm{Y}(\mathrm{HFA})^{+}$	w-m
208	$\mathrm{H}(\mathrm{HFA})^{+}$(?)	w-m
133	Cs^{+}	vvs
69	$\mathrm{CF}_{3}+$	vvs
39	$\mathrm{HF}_{2}{ }^{+}$	vvs

${ }^{a} \mathrm{~s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{v}=$ very.
Of significance is the intense peak at mass 843 which may be assigned to the $\mathrm{Cs}\left[\mathrm{Y}(\mathrm{HFA})_{3}\right]^{+}$ion. Apparently the cesium ion is held so strongly to the β-diketonate complex anion that loss of a ligand molecule can readily occur without the prior departure of Cs^{+}. This interaction may be formulated as a strong ion pair existing between the monopositive cesium ion and the sheath of electronegative fluorine atoms of the chelating ligands which surround the yttrium atom. Alternatively, the cesium ion could be bound directly to the methylene $(=\mathrm{CH}-$) carbon atom of one of the β-diketonate ligands in a manner analogous to the interaction of silver ions with the β-diketonate anions chelated to nickel in the crystal structure of $\mathrm{AgNi}\left(\mathrm{CH}_{3} \mathrm{COCH}-\right.$ $\left.\mathrm{COCH}_{3}\right)_{3} \cdot 2 \mathrm{AgNO}_{3} \cdot \mathrm{H}_{2} \mathrm{O} .{ }^{8}$ Another interesting feature of the mass spectrum is the very strong peak at mass 39 , which we tentatively assign to the $\mathrm{HF}_{2}{ }^{+}$ion. This species may result in the following manner

a process made favorable by the close proximity of the hydrogen and two fluorine atoms of a chelated ($v s$. a free) HFA group.
The X-ray crystal structure of $\mathrm{Cs}\left[\mathrm{Y}(\mathrm{HFA})_{4}\right]$ is currently being determined in our laboratory, ${ }^{9}$ the results

[^1]
[^0]: (5) A. B. Burg and W. Mahler, J. Am. Chem. Soc., 83, 2388 (1961)
 (6) L. K. Peterson and A. B. Burg, Inorg. Chem., 5, 943 (1966)
 (7) A. B. Burg and J. E. Griffiths, J. Am. Chem. Soc., 83, 4333 (1961).
 (8) F. N. Hooge and P. J. Christen, Rec. Trav. Chim., 77, 911 (1958).

[^1]: to 900 mass units; higher masses were obtained by extrapolation and are inherently less accurate.
 (8) W. H. Watson and C. Lin, Inorg. Chem., 5, 1074 (1966).
 (9) F. A. Cotton, P. Legzdins, and S. J. Lippard, unpublished work, still in progress.

